<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
When a shallow layer of inviscid fluid flows over a substrate, the fluid particle trajectories are, to leading order in the layer thickness, geodesics on the two-dimensional curved space of the substrate. Since the two-dimensional geodesic equation is a two degree-of-freedom autonomous Hamiltonian system, it can exhibit chaos, depending on the shape of the substrate. We find chaotic behaviour for a range of substrates.
13 pages, 27 figures. PDFLaTeX with RevTeX4-1 macros. Fixed some typos and updated references. Published in proceedings of the conference on "Chaos, Complexity, and Transport" (Le Pharo, Marseille, June 2007)
FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics
FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |