<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The hierarchical cold dark matter (CDM) model for structure formation is a well defined and testable model. Direct detection is the best technique for confirming the model yet predictions for the energy and density distribution of particles on earth remain inadequate. Axially symmetric collapse of collisionless dark matter can leave observable caustic rings in phase space and this model is frequently used to make experimental predictions (Sikivie 1999). Such cold collapses inevitably suffer from radial orbit instabilities that produce unrealistic bar-like halos. Moreover, this model bears no relation to the hierarchical growth of CDM galactic halos which form via a complicated sequence of mergers and violent relaxation. This process destroys any symmetry and phase wraps existing caustics on a scale comparable to the first objects to collapse. Since axions can cluster on microscopic scales and free streaming of neutralinos only erases structure smaller than \sim 100 (GeV/m_{CDM}) A.U., the dynamical effects of caustics in the Galactic halo are expected to be negligible.
IDM 2000, "Third international workshop on the identification of dark matter", ed. N. Spooner (World Scientific)
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |