<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The interstellar medium is structured as a hierachy of gas clouds, that looks self-similar over 6 orders of magnitude in scales and 9 in masses. This is one of the more extended fractal in the Universe. At even larger scales, the ensemble of galaxies looks also self-similar over a certain ranges of scales, but more limited, may be over 3-4 orders of magnitude in scales. These two fractals appear to be characterized by similar Hausdorff dimensions, between 1.6 and 2. The various interpretations of these structures are discussed, in particular formation theories based on turbulence and self-gravity. In the latter, the fractal ensembles are considered in a critical state, as in second order phase transitions, when large density fluctuations are observed, that also obey scaling laws, and look self-similar over an extended range.
30 pages, 6 figures, Proceedings of "The Chaotic Universe", Roma colloquium, 1-5 Feb 99, World Scientific Advanced Series in Astrophysics and Cosmology, ed. V. Gurzadyan, Li-Zhi Fang and Remo Ruffini
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |