<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The size and time of formation of the first gravitationally bound objects in the Universe is set by the microphysical properties of the dark matter. It is argued that observations seem to favour cold and thermal candidates for the main contribution to the dark matter. For that type of dark matter, the size and time of formation of the first halos is determined by the elastic cross sections and mass of the CDM particles. Consequently, the astrophysics of CDM might allow us to measure some of the fundamental parameters of CDM particles. Essential for observations is the survival rate and spatial distribution of the very first objetcs, which are currently under debate.
8 pages, 2 figures; Invited talk at IDM06, Rhodes
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |