
I summarize some results obtained from a canonical quantization of gravitational collapse. The quantization is carried out in Kuchar variables on the LeMaitre-Tolman-Bondi family of spacetimes. I show how mass quantization, the black hole entropy and Hawking radiation may be understood in these models. Hawking radiation is obtained in the WKB approximation but the first order quantum gravity correction makes the near-horizon spectrum non-thermal, suggesting that unitarity is preserved. The quantization may be used to study quantum gravity effects in collapse leading to the formation of both covered and naked singularities.
7 pages, LaTeX. Contribution to the proceedings of QTS3, held the University of Cincinnati, September 10-14, 2003
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
