Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Physical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Physical Journal C: Particles and Fields
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Galaxy mergers in a fractal cosmology

Authors: Bruno J. Souza; Osvaldo L. Santos-Pereira; Marcelo B. Ribeiro;

Galaxy mergers in a fractal cosmology

Abstract

Abstract This work discusses the influence of galaxy mergers in the evolution of a parabolic Lemaître–Tolman–Bondi (LTB) cosmology with simultaneous big bang endowed with two consecutive single fractal galaxy distributions systems possessing fractal dimension D. Based on recent empirical findings, it is assumed that the resulting galaxy mass from mergers can be expressed by a redshift dependent decaying power law. The proposed cosmological model modifies the relativistic fractal number counts distribution by including a merger rate evolution that estimates the model’s radial density. Numerical solutions for the first order small-merger-rate approximation (SMRA) are found and the results show that a fractal galaxy distribution having $$D=1.5$$ D = 1.5 in the range $$0.1<z<1.0$$ 0.1 < z < 1.0 , and $$D=0.5$$ D = 0.5 for $$1<z<6$$ 1 < z < 6 , as suggested by recent empirical findings, the SMRA allows consistent description of the model for a merger rate power law exponent up to $$q=0.2$$ q = 0.2 considering a fractal galaxy distribution starting from the Local Group. Consistent values were also found up to $$q=2.5$$ q = 2.5 and $$z=7$$ z = 7 from a scale smaller than the Local Supercluster. These results show that galaxy mergers can be successfully incorporated into the dynamics of a parabolic LTB fractal cosmology.

Related Organizations
Keywords

QB460-466, Cosmology and Nongalactic Astrophysics (astro-ph.CO), Nuclear and particle physics. Atomic energy. Radioactivity, FOS: Physical sciences, QC770-798, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, General Relativity and Quantum Cosmology, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities