
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 39291101
pmc: PMC11402863
AbstractUsing effective field theory methods, we derive the Carrollian analog of the geodesic action. We find that it contains both “electric” and “magnetic” contributions that are in general coupled to each other. The equations of motion descending from this action are the Carrollian pendant of geodesics, allowing surprisingly rich dynamics. As an example, we derive Carrollian geodesics on a Carroll–Schwarzschild background and discover an effective potential similar to the one appearing in geodesics on Schwarzschild backgrounds. However, the Newton term in the potential turns out to depend on the Carroll particle’s energy. As a consequence, there is only one circular orbit localized at the Carroll extremal surface, and this orbit is unstable. For large impact parameters, the deflection angle is half the value of the general relativistic light-bending result. For impact parameters slightly bigger than the Schwarzschild radius, orbits wind around the Carroll extremal surface. For small impact parameters, geodesics get reflected by the Carroll black hole, which acts as a perfect mirror.
QB460-466, High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, FOS: Physical sciences, QC770-798, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, Regular Article –Theoretical Physics, General Relativity and Quantum Cosmology
QB460-466, High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, FOS: Physical sciences, QC770-798, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, Regular Article –Theoretical Physics, General Relativity and Quantum Cosmology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
