<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractBy applying conformal transformations on the action of scalar–tensor-Euler–Heisenberg theory, we obtain the exact black hole (BH) solutions in its conformal related, the well-known Einstein frame. Through imposing the conditions of (a) vanishing the electric potential at large distance from the source and (b) validity of the first law of BH thermodynamics, we obtain a set of three requirements which are not consistent, mathematically. For solving this problem we assume that under conformal transformations the nonlinearity parameter of Euler–Heisenberg (EH) electrodynamics must transform as $$a\rightarrow ae^{4\alpha \phi }$$ a → a e 4 α ϕ . Then, we obtain the exact solutions of this theory, in both of Einstein and Jordan frames, without any mathematical problems. After calculating thermodynamic quantities, we investigate validity of the thermodynamical first law (TFL) and thermal stability of the EH-BTZ BHs in both of Jordan and Einstein frames, separately.
QB460-466, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Astrophysics
QB460-466, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |