<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractWe study the most general cosmological model with real scalar field which is minimally coupled to gravity. Our calculations are based on Friedmann–Lemaitre–Robertson–Walker (FLRW) background metric. Field equations consist of three differential equations. We switch independent variable from time to scale factor by change of variable $${\dot{a}}/a=H(a)$$ a ˙ / a = H ( a ) . Thus a new set of differential equations are analytically solvable with known methods. We formulate Hubble function, the scalar field, potential and energy density when one of them is given in the most general form. a(t) can be explicitly found as long as methods of integration techniques are available. We investigate the dynamics of the universe at early times as well as at late times in light of these formulas. We find mathematical machinery which turns on and turns off early accelerated expansion. On the other hand late time accelerated expansion is explained by cosmic domain walls. We have compared our results with recent observations of type Ia supernovae by considering the Hubble tension and absolute magnitude tension. Eighty-nine percent of present universe may consist of domain walls while rest is matter.
QB460-466, Nuclear and particle physics. Atomic energy. Radioactivity, FOS: Physical sciences, QC770-798, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, General Relativity and Quantum Cosmology
QB460-466, Nuclear and particle physics. Atomic energy. Radioactivity, FOS: Physical sciences, QC770-798, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, General Relativity and Quantum Cosmology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |