
doi: 10.1139/p83-148
Quantization of the electromagnetic field in a class of covariant gauges is performed on a positive metric Hilbert space. Although losing manifest covariance, we find at the free field level the existence of two physical spaces where Poincaré transformations are implemented unitarily. This gives rise to two different physical interpretations of the theory. Unitarity of the S operator for an interaction with an external source then forces one to postulate that a restricted gauge invariance must hold. This singles out one interpretation, the one where two transverse photons are physical.
Applications of functional analysis in quantum physics, indefinite metric quantization, Applications of operator theory in the physical sciences, Electromagnetic interaction; quantum electrodynamics, Axiomatic quantum field theory; operator algebras
Applications of functional analysis in quantum physics, indefinite metric quantization, Applications of operator theory in the physical sciences, Electromagnetic interaction; quantum electrodynamics, Axiomatic quantum field theory; operator algebras
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
