Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
SIAM Journal on Discrete Mathematics
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rational Exponents for Cliques

Rational exponents for cliques
Authors: English, Sean; Halfpap, Anastasia; Krueger, Robert A.;

Rational Exponents for Cliques

Abstract

Let $\mathrm{ex}(n,H,\mathcal{F})$ be the maximum number of copies of $H$ in an $n$-vertex graph which contains no copy of a graph from $\mathcal{F}$. Thinking of $H$ and $\mathcal{F}$ as fixed, we study the asymptotics of $\mathrm{ex}(n,H,\mathcal{F})$ in $n$. We say that a rational number $r$ is \emph{realizable for $H$} if there exists a finite family $\mathcal{F}$ such that $\mathrm{ex}(n,H,\mathcal{F}) = Θ(n^r)$. Using randomized algebraic constructions, Bukh and Conlon showed that every rational between $1$ and $2$ is realizable for $K_2$. We generalize their result to show that every rational between $1$ and $t$ is realizable for $K_t$, for all $t \geq 2$. We also determine the realizable rationals for stars and note the connection to a related Sidorenko-type supersaturation problem.

28 pages, 8 figures

Keywords

Extremal problems in graph theory, generalized extremal function, FOS: Mathematics, Mathematics - Combinatorics, rational exponents conjecture, extremal combinatorics, Structural characterization of families of graphs, Combinatorics (math.CO), Enumeration in graph theory, 05C35

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green