Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
SIAM Journal on Optimization
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Splitting the Conditional Gradient Algorithm

Splitting the conditional gradient algorithm
Authors: Zev Woodstock; Sebastian Pokutta;

Splitting the Conditional Gradient Algorithm

Abstract

We propose a novel generalization of the conditional gradient (CG / Frank-Wolfe) algorithm for minimizing a smooth function $f$ under an intersection of compact convex sets, using a first-order oracle for $\nabla f$ and linear minimization oracles (LMOs) for the individual sets. Although this computational framework presents many advantages, there are only a small number of algorithms which require one LMO evaluation per set per iteration; furthermore, these algorithms require $f$ to be convex. Our algorithm appears to be the first in this class which is proven to also converge in the nonconvex setting. Our approach combines a penalty method and a product-space relaxation. We show that one conditional gradient step is a sufficient subroutine for our penalty method to converge, and we provide several analytical results on the product-space relaxation's properties and connections to other problems in optimization. We prove that our average Frank-Wolfe gap converges at a rate of $\mathcal{O}(\ln t/\sqrt{t})$, -- only a log factor worse than the vanilla CG algorithm with one set.

22 pages, 3 figures

Keywords

Numerical optimization and variational techniques, Convex programming, splitting, Applications of functional analysis in optimization, convex analysis, mathematical programming, economics, Nonconvex programming, global optimization, conditional gradient, Frank-Wolfe algorithm, Nonlinear programming, Optimization and Control (math.OC), FOS: Mathematics, 46N10, 65K10, 90C25, 90C26, 90C30, nonconvex function, Mathematics - Optimization and Control, projection free

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green