Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
SIAM Journal on Optimization
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parabolic Optimal Control Problems with Combinatorial Switching Constraints, Part II: Outer Approximation Algorithm

Parabolic optimal control problems with combinatorial switching constraints. II: Outer approximation algorithm
Authors: Buchheim, Christoph; Grütering, Alexandra; Meyer, Christian;

Parabolic Optimal Control Problems with Combinatorial Switching Constraints, Part II: Outer Approximation Algorithm

Abstract

We consider optimal control problems for partial differential equations where the controls take binary values but vary over the time horizon, they can thus be seen as dynamic switches. The switching patterns may be subject to combinatorial constraints such as, e.g., an upper bound on the total number of switchings or a lower bound on the time between two switchings. In a companion paper [arXiv:2203.07121], we describe the $L^p$-closure of the convex hull of feasible switching patterns as intersection of convex sets derived from finite-dimensional projections. In this paper, the resulting outer description is used for the construction of an outer approximation algorithm in function space, whose iterates are proven to converge strongly in $L^2$ to the global minimizer of the convexified optimal control problem. The linear-quadratic subproblems arising in each iteration of the outer approximation algorithm are solved by means of a semi-smooth Newton method. A numerical example in two spatial dimensions illustrates the efficiency of the overall algorithm.

arXiv admin note: substantial text overlap with arXiv:2203.07121

Related Organizations
Keywords

Existence theories for optimal control problems involving partial differential equations, Newton-type methods, linear-quadratic subproblems, Mixed integer programming, Optimization and Control (math.OC), Linear-quadratic optimal control problems, FOS: Mathematics, PDE-constrained optimization, outer approximation, Mathematics - Optimization and Control, switching time optimization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green