
We present a general technique for the analysis of first-order methods. The technique relies on the construction of a duality gap for an appropriate approximation of the objective function, where the function approximation improves as the algorithm converges. We show that in continuous time enforcement of an invariant that this approximate duality gap decreases at a certain rate exactly recovers a wide range of first-order continuous-time methods. We characterize the discretization errors incurred by different discretization methods, and show how iteration-complexity-optimal methods for various classes of problems cancel out the discretization error. The techniques are illustrated on various classes of problems -- including convex minimization for Lipschitz-continuous objectives, smooth convex minimization, composite minimization, smooth and strongly convex minimization, solving variational inequalities with monotone operators, and convex-concave saddle-point optimization -- and naturally extend to other settings.
In SIAM Journal on Optimization. The most recent version corrected a few typos
FOS: Computer and information sciences, Optimization and Control (math.OC), Computer Science - Data Structures and Algorithms, FOS: Mathematics, Data Structures and Algorithms (cs.DS), Mathematics - Optimization and Control
FOS: Computer and information sciences, Optimization and Control (math.OC), Computer Science - Data Structures and Algorithms, FOS: Mathematics, Data Structures and Algorithms (cs.DS), Mathematics - Optimization and Control
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
