Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://epubs.siam.o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SIAM Journal on Computing
Article . 2012 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1137/1.9781...
Article . 2009 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2008
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transitive-Closure Spanners

Authors: Arnab Bhattacharyya 0001; Elena Grigorescu; Kyomin Jung; Sofya Raskhodnikova; David P. Woodruff;
Abstract

Given a directed graph G = (V,E) and an integer k>=1, a k-transitive-closure-spanner (k-TC-spanner) of G is a directed graph H = (V, E_H) that has (1) the same transitive-closure as G and (2) diameter at most k. These spanners were implicitly studied in access control, data structures, and property testing, and properties of these spanners have been rediscovered over the span of 20 years. The main goal in each of these applications is to obtain the sparsest k-TC-spanners. We bring these diverse areas under the unifying framework of TC-spanners. We initiate the study of approximability of the size of the sparsest k-TC-spanner for a given directed graph. We completely resolve the approximability of 2-TC-spanners, showing that it is Theta(log n) unless P = NP. For k>2, we present a polynomial-time algorithm that finds a k-TC-spanner with size within O((n log n)^{1-1/k}) of the optimum. Our algorithmic techniques also yield algorithms with the best-known approximation ratio for well-studied problems on directed spanners when k>3: DIRECTED k-SPANNER, CLIENT/SERVER DIRECTED k-SPANNER, and k-DIAMETER SPANNING SUBGRAPH. For constant k>=3, we show that the size of the sparsest k-TC-spanner is hard to approximate with 2^{log^{1-eps} n} ratio unless NP \subseteq DTIME(n^{polylog n}}). Finally, we study the size of the sparsest k-TC-spanners for H-minor-free graph families. Combining our constructions with our insight that 2-TC-spanners can be used for designing property testers, we obtain a monotonicity tester with O(log^2 n /eps) queries for any poset whose transitive reduction is an H-minor free digraph, improving the Theta(sqrt(n) log n/eps)-queries required of the tester due to Fischer et al (2002).

Extended abstract with appendices

Country
Korea (Republic of)
Keywords

FOS: Computer and information sciences, Computer Science - Computational Complexity, Computer Science - Data Structures and Algorithms, 511, F.2.2; G.2.2; G.2.3, Data Structures and Algorithms (cs.DS), G.2.2, F.2.2, G.2.3, Computational Complexity (cs.CC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Green
bronze