
handle: 1721.1/44717
We introduce the notion of a Canonical Tester for a class of properties on distributions, that is, a tester strong and general enough that "a distribution property in the class is testable if and only if the Canonical Tester tests it". We construct a Canonical Tester for the class of symmetric properties of one or two distributions, satisfying a certain weak continuity condition. Analyzing the performance of the Canonical Tester on specific properties resolves several open problems, establishing lower bounds that match known upper bounds: we show that distinguishing between entropy β on distributions over [n] requires nα/β- o(1) samples, and distinguishing whether a pair of distributions has statistical distance β requires n1-o(1) samples. Our techniques also resolve a conjecture about a property that our Canonical Tester does not apply to: distinguishing identical distributions from those with statistical distance >β requires Ω(n2/3) samples.
Electrical Engineering and Computer Science
Electrical Engineering and Computer Science
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 69 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
