
doi: 10.1137/080731128
handle: 11391/281293 , 11391/173329
Let G be a directed acyclic graph (DAG). An upward (k,h)-topological book embedding of G is an upward book embedding on k pages of a subdivision of G where every edge is replaced by a path having at most h+2 vertices. In this paper it is proved that every DAG with n vertices admits an upward (d+1, 2⌈logdn⌉-1)-topological book embedding, where d is any integer such that d≥2. The result extends to the upward case well-known theorems for topological book embeddings of undirected graphs [H. Enomoto and M. S. Miyauchi, SIAM J. Discrete Math., 12 (1999), pp. 337–341], [M. S. Miyauchi, IEICE Transactions, 88-A (2005), pp. 1136–1139].
graph algorithms; book embeddings; upward drawings, Upward topological book Embedding
graph algorithms; book embeddings; upward drawings, Upward topological book Embedding
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
