
How long does it take until economic agents converge to an equilibrium? By studying the complexity of the problem of computing a mixed Nash equilibrium in a game, we provide evidence that there are games in which convergence to such an equilibrium takes prohibitively long. Traditionally, computational problems fall into two classes: those that have a polynomial-time algorithm and those that are NP-hard. However, the concept of NP-hardness cannot be applied to the rare problems where "every instance has a solution"---for example, in the case of games Nash's theorem asserts that every game has a mixed equilibrium (now known as the Nash equilibrium, in honor of that result). We show that finding a Nash equilibrium is complete for a class of problems called PPAD, containing several other known hard problems; all problems in PPAD share the same style of proof that every instance has a solution.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 927 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
