
It is becoming increasingly apparent that probabilistic approaches can overcome conservatism and computational complexity of the classical worst-case deterministic framework and may lead to designs that are actually safer. In this paper we argue that a comprehensive probabilistic robustness analysis requires a detailed evaluation of the robustness function and we show that such evaluation can be performed with essentially any desired accuracy and confidence using algorithms with complexity linear in the dimension of the uncertainty space. Moreover, we show that the average memory requirements of such algorithms are absolutely bounded and well within the capabilities of today's computers. In addition to efficiency, our approach permits control over statistical sampling error and the error due to discretization of the uncertainty radius. For a specific level of tolerance of the discretization error, our techniques provide an efficiency improvement upon conventional methods which is inversely proportional to the accuracy level; i.e., our algorithms get better as the demands for accuracy increase.
28 pages, 5 figures
FOS: Computer and information sciences, FOS: Mathematics, Mathematics - Statistics Theory, Applications (stat.AP), Statistics Theory (math.ST), Statistics - Applications
FOS: Computer and information sciences, FOS: Mathematics, Mathematics - Statistics Theory, Applications (stat.AP), Statistics Theory (math.ST), Statistics - Applications
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
