
arXiv: quant-ph/0511069
The treewidth of a graph is a useful combinatorial measure of how close the graph is to a tree. We prove that a quantum circuit with $T$ gates whose underlying graph has treewidth $d$ can be simulated deterministically in $T^{O(1)}\exp[O(d)]$ time, which, in particular, is polynomial in $T$ if $d=O(\log T)$. Among many implications, we show efficient simulations for log-depth circuits whose gates apply to nearby qubits only, a natural constraint satisfied by most physical implementations. We also show that one-way quantum computation of Raussendorf and Briegel (Physical Review Letters, 86:5188--5191, 2001), a universal quantum computation scheme with promising physical implementations, can be efficiently simulated by a randomized algorithm if its quantum resource is derived from a small-treewidth graph.
7 figures
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 311 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
