Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Caltech Authors (Cal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
SIAM Journal on Applied Mathematics
Article . 1983 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fast Seismic Ray Tracing

Fast seismic ray tracing
Authors: Keller, H. B.; Perozzi, D. J.;

Fast Seismic Ray Tracing

Abstract

Summary: New methods for the fast, accurate and efficient calculation of large classes of seismic rays joining two points \(x_ S\) and \(x_ R\) in very general two-dimensional configurations are presented. The medium is piecewise homogeneous with arbitrary interfaces separating regions of different elastic properties (i.e., differing wave speeds \(c_ P\) and \(c_ S)\). In general there are \(2^{N+1}\) rays joining \(x_ S\) to \(x_ R\) while making contact with N interfaces. Our methods find essentially all such rays for a given N by using continuation or homotopy methods on the wave speeds to solve the ray equations determined by Snell's law. In addition travel times, ray amplitudes and caustic locations are obtained. When several receiver positions \(x_ R^{(j)}\) are to be included, as in a gather, our techniques easily yield all the rays for the entire gather by employing continuation in the receiver location. The applications, mainly to geophysical inverse problems, are reported elsewhere.

Country
United States
Related Organizations
Keywords

Seismology (including tsunami modeling), earthquakes, Inverse problems for waves in solid mechanics, Computational methods for problems pertaining to geophysics, fast, accurate and efficient calculation, continuation or homotopy methods, very general two-dimensional configurations, addition travel times, ray amplitudes, caustic locations, 530, 510, ray equations determined by Snell's law, piecewise homogeneous, seismic rays joining two points, arbitrary interfaces separating regions of different elastic properties, Geophysical solid mechanics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Average
Green
bronze