Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Occupational and Env...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Occupational and Environmental Medicine
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gene-environment interactions in parkinsonism and Parkinson’s disease: the Geoparkinson study

Authors: DICK FD; DE PALMA, Giuseppe; AHMADI A; OSBORNE A; SCOTT NW; PRESCOTT GJ; BENNETT J; +11 Authors

Gene-environment interactions in parkinsonism and Parkinson’s disease: the Geoparkinson study

Abstract

Objectives:To investigate associations of Parkinson’s disease (PD) and parkinsonian syndromes with polymorphic genes that influence metabolism of either foreign chemical substances or dopamine and to seek evidence of gene-environment interaction effects that modify risk.Methods:A case-control study of 959 prevalent cases of parkinsonism (767 with PD) and 1989 controls across five European centres. Occupational hygienists estimated the average annual intensity of exposure to solvents, pesticides and metals, (iron, copper, manganese), blind to disease status.CYP2D6,PON1,GSTM1, GSTT1, GSTM3, GSTP1, NQO1, CYP1B1, MAO-A, MAO-B, SOD 2, EPHX,DAT1, DRD2andNAT2were genotyped. Results were analysed using multiple logistic regression adjusting for key confounders.Results:There was a modest but significant association betweenMAO-Apolymorphism in males and disease risk (G vs T, OR 1.30, 95% CI 1.02 to 1.66, adjusted). The majority of gene-environment analyses did not show significant interaction effects. There were possible interaction effects betweenGSTM1 nullgenotype and solvent exposure (which were stronger when limited to PD cases only).Conclusions:Many small studies have reported associations between genetic polymorphisms and PD. Fewer have examined gene-environment interactions. This large study was sufficiently powered to examine these aspects.GSTM1 nullsubjects heavily exposed to solvents appear to be at increased risk of PD. There was insufficient evidence that the other gene-environment combinations investigated modified disease risk, suggesting they contribute little to the burden of PD.

Country
Italy
Keywords

Male, Polymorphism, Genetic, Genotype, Parkinson's disease; parkinsonism; genetics, Parkinson Disease, Environmental Exposure, Europe, Risk Factors, Case-Control Studies, Odds Ratio, Humans, Female, Genetic Predisposition to Disease, Sex Distribution

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 10%
Top 10%
bronze