Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neurology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neurology Neurosurgery & Psychiatry
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

THE NEUROMUSCULAR JUNCTION DISORDERS

Authors: Marguerite, Hill;

THE NEUROMUSCULAR JUNCTION DISORDERS

Abstract

Neuromuscular junction (NMJ) disorders result from destruction, malfunction or absence of one or more key proteins involved in neuromuscular transmission, illustrated diagrammatically in fig 1. The most common pathology is antibody mediated damage or down regulation of ion channels or receptors, resulting in myasthenia gravis (MG), Lambert-Eaton myasthenic syndrome (LEMS), and acquired neuromyotonia (Isaac’s syndrome). Not surprisingly these three conditions share many common features (table 1). A second important group of disorders are the congenital myasthenic syndromes caused by mutations in NMJ proteins. Detailed discussion of these rare conditions is beyond the scope of this short review but interested readers are referred to a recent review by Engel and Ohno.1 View this table: Table 1 Comparison of the key features of the different autoimmune conditions that affect the neuromuscular junction Figure 1 Diagrammatic representation of neuromuscular transmission. (1) Action potential arriving at nerve terminal triggers opening of voltage gated calcium channels (VGCCs) and entry of calcium. (2) Rise in intracellular calcium triggers release of packets of acetylcholine (ACh). (3) Interaction of ACh with ACh receptors (AChR) depolarises post-synaptic membrane. (4) Voltage gated sodium channels (VGSCs) open, triggering muscle action potential. (5) ACh esterase (AChE) breaks ACh into acetyl and choline, which are taken up by the nerve terminal to be reformed into ACh. (6) Opening of voltage gated potassium channels (VGKCs) repolarises nerve terminal. ### Pathophysiology In anti-AChR antibody positive MG, autoantibodies target the acetylcholine (ACh) receptor (AChR) resulting in receptor blockade, down regulation, and complement mediated destruction, thus reducing the number of receptors available to interact with the ACh released from the presynaptic nerve terminal. Complement activation attracts activated macrophages, which cause significant damage to the synaptic folds and loss of voltage gated sodium channels, which in turn increases the threshold required to initiate a muscle action potential. The consequence of the combined loss of AChRs and …

Related Organizations
Keywords

Diagnosis, Differential, Humans, Neuromuscular Junction Diseases, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Average
bronze