Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neurology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neurology Neurosurgery & Psychiatry
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The basics of electromyography

Authors: Mills, K R;

The basics of electromyography

Abstract

Electromyography (EMG), the recording of electrical activity in muscle, should be regarded as an extension of the clinical examination. It can distinguish myopathic from neurogenic muscle wasting and weakness. It can detect abnormalities such as chronic denervation or fasciculations in clinically normal muscle. It can, by determining the distribution of neurogenic abnormalities, differentiate focal nerve, plexus, or radicular pathology; and it can provide supportive evidence of the pathophysiology of peripheral neuropathy, either axonal degeneration or demyelination. EMG is an obligatory investigation in motor neurone disease to demonstrate the widespread denervation and fasciculation required for secure diagnosis. Recordings are made with a disposable concentric needle electrode inserted into the muscle. A fine wire in the axis of the needle is insulated from the shaft, the end of the needle being cut at an acute angle. The area of the recording surface determines the volume of muscle that the needle can “see”. Conventional EMG needles record from a hemisphere of radius of about 1 mm. Within this volume there are some 100 muscle fibres. The many hundreds of muscle fibres belonging to one motor unit are distributed widely throughout the cross section of the muscle and, therefore, within the pick-up region of the needle there may be just 4–6 fibres of a single motor unit. Analysis of the waveforms and firing rates of single motor or multiple motor units can give diagnostic information. Electromyographers are skilled at interpreting both the appearance of muscle activity and the sound of the activity transmitted through a loud speaker. Normal resting muscle is silent. Patients often have difficulty completely relaxing a muscle. The motor unit activity associated with incomplete relaxation is distinguished from abnormal spontaneous activity by its rhythmicity. Motor units when first recruited or on the point of being de-recruited fire regularly at 6–10 spikes …

Country
United Kingdom
Keywords

Motor Neurons, Electromyography, Nerve Compression Syndromes, Peripheral Nervous System Diseases, Neuromuscular Diseases, Muscular Diseases, Humans, Motor Neuron Disease, Brachial Plexus Neuropathies, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    120
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
120
Top 1%
Top 10%
Average
bronze