Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heartarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Heart
Article
Data sources: UnpayWall
Heart
Article . 1998 . Peer-reviewed
Data sources: Crossref
Heart
Article . 1998
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dealing with in-stent restenosis

Authors: J Baron; Anthony H. Gershlick;

Dealing with in-stent restenosis

Abstract

Stents have been shown to reduce the incidence of restenosis; however, they are not a cure. In two trials the angiographic restenosis rate was reported to be between 20% and 30% (in the Benestent II trial the unpublished quoted restenosis rate was 15%). These trials were based on stenting short, de novo lesions, in native coronary arteries. Whether such results are applicable to the widespread stenting that is currently being practised is not clear. It has been shown that the incidence of in-stent restenosis may vary according to the conditions of stenting and the vessel being stented. The number of stents deployed, whether there has been previous intervention, the size of vessel stented, the location of the lesion, whether the vessel is a native coronary artery or vein graft, co-morbid conditions such as diabetes, and stent design may all affect the incidence of in-stent restenosis. Rates of up to 40% have been reported when lesions other than de novo Benestent-type are treated. How factors such as multiple stenting promote restenosis is not always clear. The next goal in stent development therefore should be to reduce further the need for repeat intervention for any stent deployed under any circumstance. Stents prevent negative remodelling and recoil. The need for repeat intervention is predominantly because of tissue ingrowth. Extensive animal data and information from some human postmortem samples have identified the nature of in-stent restenosis. The process appears to be initiated by a giant cell based inflammatory reaction centred on the stent struts (fig 1).1 Thereafter the responses to the stent are similar to many of the changes demonstrated previously for balloon angioplasty. Smooth muscle cells migrate through the internal elastic lamina and proliferate in the newly formed intimal layer (fig 2).2 Angiographic studies and intravascular ultrasound suggest stents …

Related Organizations
Keywords

Atherectomy, Coronary, Recurrence, Humans, Coronary Disease, Stents, Combined Modality Therapy, Angioplasty, Balloon, Muscle, Smooth, Vascular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%
bronze