Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heartarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Heart
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Heart
Article . 2003 . Peer-reviewed
Data sources: Crossref
Heart
Article . 2003
Heart
Article . 2003
Data sources: Pure Amsterdam UMC
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of the heart: (2) Septation of the atriums and ventricles

Authors: Anderson, Robert H.; Webb, Sandra; Brown, Nigel A.; Lamers, Wouter; Moorman, Antoon;

Development of the heart: (2) Septation of the atriums and ventricles

Abstract

In the first part of our review of cardiac development,1 we discussed the initial changes involved in transformation of the heart forming regions of the embryo into the great veins, the atrial and ventricular chambers, and the arterial trunks. We showed that this first part of cardiac development could be divided into phases of formation of the primary myocardial tube, looping of the tube, during which additional parts are added that give the future compartments their definitive topography, and the assembly of these components into the cardiac chambers and arterial trunks. In this second review, we discuss the processes that complete the separation of the two sides of the definitive heart, for the most part involving septation of the parts of the primary tube not themselves directly involved in formation of the chamber-specific compartments of the atriums and ventricles. In this respect, when concluding our first review, we explained how the arterial trunks were also formed by septation within the solitary outflow tract of the primary heart tube. We also showed, however, that subsequent to formation of the two arterial trunks, there was disappearance of the cushions that initially divided them. Thus, in the definitive heart, the proximal parts of the aorta and pulmonary trunk, along with the sinuses of the arterial roots and the subpulmonary infundibulum, possess their own discrete walls, separated by extra-cardiac space. Although septation by fusion of endocardial cushions will be a topic included in this second review, septation and separation of the outflow tracts is sufficiently complicated to require special treatment. Because of this, we will devote a third review specifically to the mechanisms underscoring the remodelling of the outflow tracts. In this review, therefore, we will confine our considerations to the formation of the atrial, atrioventricular, and ventricular septal structures. As will become …

Country
Netherlands
Keywords

Heart Ventricles, Humans, Heart Atria

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    152
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
152
Top 10%
Top 1%
Top 10%
bronze