Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Gutarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Gut
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Gastroenterology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gastroenterology
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gut
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enteroendocrine cells and appetite dysregulation in Crohn's disease

Authors: Gordon W. Moran; John McLaughlin;

Enteroendocrine cells and appetite dysregulation in Crohn's disease

Abstract

Introduction Loss of appetite and malnutrition in active Crohn's disease (CD) are important problems. The biological mechanisms underpinning appetite loss are unclear. Enteroendocrine cells (EEC) form a pivotal part of the brain-gut axis that controls appetite and satiety. They secrete gut hormones such as glucagon like peptide-1 (GLP-1) and polypeptide YY (PYY) which act on appetite control centres in the brainstem through an endocrine or paracrine pathway. Recent animal research has suggested that immune-regulated upregulation of proximal CCK-secreting EEC plays a mechanistic role in the appetite and feeding disturbance observed during gut inflammation. We have studied whether distal ileal EEC are perturbed in ileocolonic Crohn's disease. Methods Patients with active intestinal inflammation were studied: active small and large bowel (SB and LB, respectively) CD and age/sex matched controls. Patient symptoms were assessed using a validated visual analogue score (VAS). At tissue level EEC markers and transcription factors have been studied through immunohistochemistry and quantitative polymerase chain reaction. Gut hormone responses to a test meal (PYY and GLP-1) were studied using a multiplex-ELISA technique. Results CD patients with active inflammation displayed a ∼6-fold significant reduction in appetite parameters as measured by VAS (p < 0.0001). At the tissue level, the general EEC marker chromogranin A showed a 1.8-fold increase in positive cells (p = 0.01), while GLP-1 cells were increased 2.5-fold in SB CD (p = 0.04). PYY cells showed no change in number. Phox2b, a neural transcription factor associated with CD in a recent genome wide association study, was co-localised to EEC through dual immunofluorescence and showed a 1.5-fold increase in SB CD compared to controls. At mRNA level, significant increases were noted for Chromogranin A (3.3-fold; p = 0.009), GLP-1 (2.7-fold p = 0.05), Ubiquitination protein 4a (Ube4a) (2.2-fold p = 0.02) but not PYY. Neurogenin 3, a NOTCH transcription factor central to EEC differentiation also showed ∼2-fold-upregulation (p = 0.04). In plasma, total PYY showed a 2-fold increase in postprandial levels in the SB-CD group compared to controls (p = 0.038). It was not elevated in LB-CD. Active GLP-1 levels were, however, not elevated. Conclusion Measurable changes were observed in distal small intestinal EEC markers in active CD, including elements of both GLP-1 and PYY. These data support a potential role of EEC in appetite dysregulation in intestinal inflammation. Measurements of gut hormones in peripheral blood may not adequately reflect biologically important changes occurring at the epithelial level. Enhanced EEC responses to nutrients may adversely affect appetite through increased gut-brain signalling, and provide novel therapeutic targets. Further work is underway to further dissect this neuroendocrine circuitry.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze