Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal of O...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal of Ophthalmology
Article . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

Macular pigment and age related macular degeneration

Authors: Beatty, S.; Boulton, M.; Henson, D.; Koh, H. H.; Murray, I. J.;

Macular pigment and age related macular degeneration

Abstract

The yellow coloration of the macula lutea is attributable to the presence of macular pigment in the axons of its photoreceptors.1 In the 1980s several investigators demonstrated that macular pigment consists of the xanthophyll isomers, lutein and zeaxanthin.2 3 Although the role of the macular pigment remains uncertain, several functions have been hypothesised and these include reduction of the effects of light scatter and chromatic aberration on visual performance,4 5 limitation of the damaging photo-oxidative effects of blue light through its absorption,6-8 and protection against the adverse effects of photochemical reactions because of the antioxidant properties of the carotenoids.9 10 Age related macular degeneration (AMD) is the leading cause of visual loss in people over the age of 65 years in the Western world.11 Although the aetiopathogenesis of AMD remains a matter of debate, there is a growing body of evidence to indicate that oxidative damage plays a role.12-14 Consequently, the possibility that the absorption characteristics and antioxidant properties of macular pigment confer protection against AMD has been postulated.10 15 A proved protective effect of macular pigment may be of therapeutic value, as it has recently been reported that human macular pigment can be augmented with dietary modification.16 In this article we review the current literature germane to macular pigment and AMD, and examine the evidence that retinal carotenoids are protective against AMD. The absorption of blue light by the macular pigment was first described in 1866 by Max Schultze who concluded: “Therefore, under an otherwise equal organisation, a retina without a yellow spot would see more blue light than one with such a spot”.17 He believed that absorption of the “most refractable violet” reduced chromatic aberration, but also hypothesised that macular pigment might provide some protection against the hazards …

Country
United Kingdom
Related Organizations
Keywords

Aged, 80 and over, Pigmentation, Smoking, Age Factors, Middle Aged, Carotenoids, Antioxidants, Macular Degeneration, Sex Factors, Humans, Macula Lutea, Pigment Epithelium of Eye, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    309
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
309
Top 1%
Top 1%
Top 1%
bronze