
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Current techniques for knowledge-based Word Sense Disambiguation (WSD) of ambiguous biomedical terms rely on relations in the Unified Medical Language System Metathesaurus but do not take into account the domain of the target documents. The authors' goal is to improve these methods by using information about the topic of the document in which the ambiguous term appears.The authors proposed and implemented several methods to extract lists of key terms associated with Medical Subject Heading terms. These key terms are used to represent the document topic in a knowledge-based WSD system. They are applied both alone and in combination with local context.A standard measure of accuracy was calculated over the set of target words in the widely used National Library of Medicine WSD dataset.The authors report a significant improvement when combining those key terms with local context, showing that domain information improves the results of a WSD system based on the Unified Medical Language System Metathesaurus alone. The best results were obtained using key terms obtained by relevance feedback and weighted by inverse document frequency.
Knowledge Bases, 610, Information Storage and Retrieval, Research and Applications, Unified Medical Language System, Medical Subject Headings, Terminology as Topic, 616, Medical Informatics, Natural Language Processing
Knowledge Bases, 610, Information Storage and Retrieval, Research and Applications, Unified Medical Language System, Medical Subject Headings, Terminology as Topic, 616, Medical Informatics, Natural Language Processing
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
