Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao High Temperaturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
High Temperature
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ideal and Ultimate Tensile Strength of a Solid Body

Authors: Vladimir G. Baidakov; A. O. Tipeev;

Ideal and Ultimate Tensile Strength of a Solid Body

Abstract

The mechanical stability of an ideal elastic solid under infinitesimal and finitesimal changes in its state parameters is considered. The temperature and density dependences of the isothermic moduli of bulk compression K, simple shear, and tetragonal shear in a Lennard-Jones face-centered cubic (FCC) crystal have been determined by means of molecular dynamic experiments in the region of stable and metastable states. It has been shown that the crystalline phase remains stable under long-wave spatially nonuniform density fluctuations on the spinodal (K = 0) at pressures below the pressure of the endpoint of the melting line (p < pK < 0). Here, the critical nucleus formation work is also finitesimal. Hence, spinodal states in quasisteady- state processes at p < 0 not only are attainable, but the transition across the spinodal without destroying the homogeneity in the substance also proves to be feasible. In this case, the boundary of the ideal strength of a solid is set by the vanishing of the uniaxial compression modulus $$\tilde K$$ for a certain specified deformation direction. The spinodal also is not the boundary of the ideal strength of a solid at positive and small negative pressures. A solid loses its ability for a restorative response to finitesimal spatially nonuniform density disturbances before the spinodal ( $$\tilde K$$ = 0) is attained.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!