Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physics of Particles...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physics of Particles and Nuclei
Article . 1999 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 1998
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nonperturbative effects in QCD at finite temperature and density

Authors: Craig D. Roberts;

Nonperturbative effects in QCD at finite temperature and density

Abstract

These lecture notes illustrate the application of Dyson-Schwinger equations in QCD. The extensive body of work at zero temperature and chemical potential is represented by a selection of contemporary studies that focus on solving the Bethe-Salpeter equation, deriving an exact mass formula in QCD that describes light and heavy pseudoscalar mesons simultaneously, and the calculation of the electromagnetic pion form factor and the vector meson electroproduction cross sections. These applications emphasise the qualitative importance of the momentum-dependent dressing of elementary Schwinger functions in QCD, which provides a unifying connection between disparate phenomena. They provide a solid foundation for an extension of the approach to nonzero temperature and chemical potential. The essential, formal elements of this application are described and four contemporary studies employed to exemplify the method and its efficacy. They study the demarcation of the phase boundary for deconfinement and chiral symmetry restoration, the calculation of bulk thermodynamic properties of the quark-gluon plasma and the response of pi- and rho-meson observables to T and mu. Along the way a continuum order parameter for deconfinement is introduced, an anticorrelation between the response of masses and decay constants to T and their response to mu elucidated, and a (T,mu)-mirroring of the slow approach of bulk thermodynamic quantities to their ultrarelativistic limit highlighted. These effects too are tied to the momentum-dependent dressing of the elementary Schwinger functions.

Summary of five lectures at the Research Workshop on Deconfinement at Finite Temperature and Density, JINR Dubna, Russia, October 1-29, 1997. 68 pages, 47 figures, LaTeX, epsfig.sty

Related Organizations
Keywords

Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, FOS: Physical sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Top 10%
Green
bronze