Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrothermal circulation in subducting crust reduces subduction zone temperatures

Authors: Glenn A. Spinelli; Troy Kummer;

Hydrothermal circulation in subducting crust reduces subduction zone temperatures

Abstract

Most thermal models of subduction zones assume no advection of heat by fluid flow because slow flow through underthrusting sediment, the decollement, and wedge likely transports only a minor amount of heat. We model coupled fluid and heat transport in a subduction zone and show that hydrothermal circulation in subducting basaltic basement rocks can have a great influence on subduction zone temperatures. Fractured basaltic basement has permeability several orders of magnitude higher than a typical decollement, allowing fluid circulation to redistribute and extract heat from a subduction zone. We simulate systems with upper basaltic basement permeability ranging from 10−13 to 10−10 m2. In addition, we incorporate the effect of permeability reduction within the basaltic basement as it is subducted. The models with fluid transport show suppressed temperatures along the subducting slab relative to models with no fluid transport. With continuous sediment cover, heat is extracted from under the margin wedge to the trench. In models where faulted ocean crust exposes high-permeability basement to the ocean floor, cooling from ocean bottom water results in highly suppressed heat flow relative to conductive models. Hydrothermally cooled ocean crust also acts to slow thermally controlled diagenetic reaction progress within subducting sediment.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!