Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Formation and maintenance of shear zones

Authors: Caleb W. Holyoke; Jan Tullis;

Formation and maintenance of shear zones

Abstract

The processes that initiate and maintain prograde ductile shear zones are not well understood. We have performed shear experiments (γ = 1 to 3) on a fine-grained (100– 150 μm) gneiss (59% quartz, 28% plagioclase, 13% aligned but not interconnected biotite) to determine the evolution of deformation mechanisms that produce dramatic strain weakening and localization, at conditions (1.5 GPa, 800 °C, \({\dot{{\gamma}}}\) = 2 × 10 −5 /s) where pure quartz aggregates deform homogeneously by dislocation creep. Initial yield occurs where stress concentrations at the tips of weak biotite grains produce semibrittle deformation in intervening quartz or plagioclase, allowing local biotite interconnection by slip on (001) and initiating strain weakening. After yield, the interconnected biotites kink and thus strengthen, but the highly strained parts of grains react to a fine-grained, mixed-phase assemblage which deforms by grain-size–sensitive creep, allowing further strain weakening and localization. At γ = 3.3, the strain and strain rate in the ∼100-μm-thick shear zone are 100 times that of the enclosing host rock, similar to the localization observed in natural shear zones. Thus, the processes that initiate strain localization are not necessarily the same as those that preserve the weak shear zone, and once formed, a shear zone may be permanently weakened.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!