Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Colloidal gold and silica in mesothermal vein systems

Authors: Jamie J. Wilkinson; Richard Herrington;

Colloidal gold and silica in mesothermal vein systems

Abstract

Some of the textural features of mesothermal gold-quartz veins may be best explained by the initial precipitation of amorphous silica gel (colloid), which subsequently crystallizes to quartz. This can occur in brittle-ductile shear zones where a significant fluid-pressure drop occurs during stick-slip failure. Such a process rapidly supersaturates the hydrothermal fluid with respect to amorphous silica, which precipitates instead of quartz, owing to favorable kinetics. Depressurization also commonly leads to fluid unmixing and destabilization of soluble gold complexes. However, the presence of colloidal silica can stabilize gold colloid, allowing further transport of particulate gold in suspension in the hydrothermal fluid. Silica gel would be highly unstable under mesothermal conditions and would undergo rapid syneresis and crystallization to form quartz; solid impurities would tend to be expelled toward grain boundaries. This model can account for the primary anhedral aggregate textures typical of mesothermal quartz veins, the concentration of gold along grain boundaries and the formation of discrete gold nuggets, and the rare occurrence of low-order silica polymorphs and relict spheroidal structures. The transport of gold in colloidal form may be one reason for the frequently consistent bulk grade distribution in gold-quartz vein systems over many hundreds of metres (in some cases kilometres) of depth. In addition, the formation of charged colloidal particles may help to explain the attraction of gold grains to specific mineral surfaces.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?