Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Microbiology Spectru...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microbiology Spectrum
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microbiology Spectrum
Article . 2025
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of YdgH: a mediator of beta-lactam susceptibility in Enterobacterales

Authors: Jacob E. Lazarus; Matthew K. Waldor; David C. Hooper;

Characterization of YdgH: a mediator of beta-lactam susceptibility in Enterobacterales

Abstract

ABSTRACT Beta-lactam antibiotics are often the treatment of choice for serious bacterial infections. In a previous screen for novel genetic mediators affecting beta-lactam susceptibility, we discovered that deletion of ydgH , a conserved gene of unknown function, leads to increased resistance to beta-lactams, as well as increased susceptibility to detergent compounds. Here, we further characterize YdgH in Serratia marcescens, Enterobacter cloacae , and Escherichia coli using a combination of biochemical and cell biological approaches. We find that YdgH fractionates with periplasmic proteins, and this periplasmic localization is necessary for its function. Using purified recombinant protein, we demonstrate that YdgH is a relatively compact, globular monomer. The YdgH polypeptide contains three tandem DUF1471 domains. In a Δ ydgH background, overexpression of polypeptides containing both the second and the third, but not the first DUF1471 domain, is necessary to rescue the deletion phenotype. To determine how YdgH function influences beta-lactam and detergent susceptibility, we tested several targeted hypotheses. We found that deletion of ydgH neither affects ompC or ompF transcript levels , nor does it alter the processing of lipopolysaccharide, nor does it activate the sigma E regulon alone or in combination with mutations in other periplasmic proteins. Finally, we delineate the results of a genetic screen for spontaneous mutants that complement the detergent susceptibility phenotype, the results of which may fuel the further studies that are necessary to determine the precise role YdgH plays in bacterial physiology. IMPORTANCE Beta-lactams such as penicillins and cephalosporins are the most commonly prescribed antibiotics for serious bacterial infections. Increasing antibiotic resistance threatens their effectiveness. We previously identified the uncharacterized gene ydgH as a modifier of beta-lactam susceptibility in Gram-negative bacteria. To begin to understand the specific role of YdgH, in this study, we perform initial characterizations of this protein. We also test hypotheses as to how the function of YdgH contributes to beta-lactam physiology.

Keywords

periplasm, cell envelope, outer membrane, beta-lactam, Microbiology, QR1-502, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold