Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ mBioarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
mBio
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
mBio
Article . 2024
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
mBio
Article . 2024
Data sources: DOAJ
https://doi.org/10.1101/2023.0...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

Toxinome—the bacterial protein toxin database

Authors: Aleks Danov; Ofir Segev; Avi Bograd; Yedidya Ben Eliyahu; Noam Dotan; Tommy Kaplan; Asaf Levy;

Toxinome—the bacterial protein toxin database

Abstract

ABSTRACT Protein toxins are key molecular weapons in biology that are used to attack neighboring cells. Bacteria use protein toxins to kill or inhibit the growth of prokaryotic and eukaryotic cells using various modes of action that target essential cellular components. The toxins are responsible for shaping microbiomes in different habitats, for abortive phage infection, and for severe infectious diseases in animals and plants. Although several toxin databases have been developed, each one is devoted to a specific toxin family, and they encompass a relatively small number of toxins. Antimicrobial toxins are often accompanied by antitoxins (or immunity proteins) that neutralize the cognate toxins. Here, we combined toxins and antitoxins from many resources and created Toxinome, a comprehensive and updated bacterial protein toxin database. The Toxinome includes a total of 1,483,028 toxins and 491,345 antitoxins encoded in 59,475 bacterial genomes across the tree of life. We identified a depletion of toxin and antitoxin genes in bacteria that dwell in extreme temperatures. We defined 5,161 unique Toxin Islands within phylogenetically diverse bacterial genomes, which are loci dense in toxin and antitoxin genes. By focusing on the unannotated genes within these islands, we characterized a number of these genes as toxins or antitoxins. Finally, we developed an interactive Toxinome website ( http://toxinome.pythonanywhere.com ) that allows searching and downloading of our database. The Toxinome resource will be useful to the large research community interested in bacterial toxins and can guide toxin discovery and function elucidation, and infectious disease diagnosis and treatment. IMPORTANCE Microbes use protein toxins as important tools to attack neighboring cells, microbial or eukaryotic, and for self-killing when attacked by viruses. These toxins work through different mechanisms to inhibit cell growth or kill cells. Microbes also use antitoxin proteins to neutralize the toxin activities. Here, we developed a comprehensive database called Toxinome of nearly two million toxins and antitoxins that are encoded in 59,475 bacterial genomes. We described the distribution of bacterial toxins and identified that they are depleted by bacteria that live in hot and cold temperatures. We found 5,161 cases in which toxins and antitoxins are densely clustered in bacterial genomes and termed these areas “Toxin Islands.” The Toxinome database is a useful resource for anyone interested in toxin biology and evolution, and it can guide the discovery of new toxins.

Keywords

protein toxins, Bacteria, Bacterial Toxins, toxins, Microbiology, QR1-502, Bacterial Proteins, Antitoxins, database, Genome, Bacterial, bacterial toxins, microbial toxins, effectors, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
gold
Related to Research communities