Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Virology
Article . 1997 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sindbis virus replicons and Sindbis virus: assembly of chimeras and of particles deficient in virus RNA

Authors: Sondra Schlesinger; Ilya Frolov; Elena I. Frolova;

Sindbis virus replicons and Sindbis virus: assembly of chimeras and of particles deficient in virus RNA

Abstract

Alphaviruses are a well-characterized group of positive-strand RNA viruses. The identification of cis-acting elements in their genomes and their replication strategy have made them useful as vectors for the expression of heterologous genes. In infected cells, the nonstructural proteins, required for replication and transcription of the viral genes, are translated from the genomic RNA; the structural proteins, the capsid protein that interacts with the RNA to form the nucleocapsid and the proteins embedded in the lipid envelope, are translated from a subgenomic mRNA and can be replaced by heterologous genes. Such modified genomes are self-replicating (replicons); they can be introduced into the cells by transfection and can also be packaged into extracellular particles with defective helper (DH) RNAs. The particular DH RNA determines how well it is replicated and to what extent it is packaged. One potential complication of this system has been that recombination between the replicon genome and the DH RNA may occur. The studies described here were designed to prevent recombination by expressing the capsid protein from one DH RNA and the virus membrane proteins from a second helper RNA. Recombination to yield a nonsegmented infectious virus genome would then require several independent crossover events. There is a translational enhancer located downstream of the initiating AUG in the RNA of the capsid gene that had to be conserved in the second helper to achieve high-level expression of the viral glycoproteins. For this reason, we modified the capsid protein gene in two ways: the first was to use the capsid protein gene from a different alphavirus, Ross River virus, and the second was to make deletions in that gene to maintain the translational enhancer in the RNA but to eliminate the positively charged region in the protein that should be essential for the specific and nonspecific interactions with RNA. Transfections with replicon RNA and the deleted chimeric DH RNA as the only helper resulted in the high-level production of particles that were almost completely devoid of RNA. The inclusion of a helper expressing an intact Sindbis virus capsid protein gene led to the production of high levels of packaged replicons. Recombinants were not detected even after several undiluted passages.

Related Organizations
Keywords

Recombination, Genetic, Virus Assembly, Molecular Sequence Data, Virion, Defective Viruses, Transfection, Cell Line, Capsid, Viral Envelope Proteins, Cricetinae, Ross River virus, Animals, RNA, Viral, Replicon, Amino Acid Sequence, Sindbis Virus, Helper Viruses

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 10%
Top 10%
Top 10%
bronze