Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Virologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Virology
Article . 1985 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Reverse transcription of retroviral genomes: mutations in the terminal repeat sequences

Authors: L I, Lobel; S P, Goff;

Reverse transcription of retroviral genomes: mutations in the terminal repeat sequences

Abstract

The process of reverse transcription of retroviral genomes begins with the synthesis of a short DNA molecule near the 5' end of the RNA template. This molecule, termed minus-strand strong-stop DNA, is then translocated to the 3' end of the viral RNA by means of a repeated sequence, the R region, present at both ends of the template. The translocation should result in the transfer of genetic information from the 5' R region to the 3' R region. We have generated a series of mutants of Moloney murine leukemia virus with alterations in the R regions by in vitro mutagenesis of a cloned DNA copy of the viral genome. The altered DNAs were introduced into mouse cells by transfection, and the translocation of the mutations during viral replication was assessed. Some mutations were not transferred from the 5' R region to the 3' R region; these results were not in accord with current models for reverse transcription. The results can be explained if DNA molecules shorter than strong-stop DNA, formed by premature termination of synthesis, are sometimes translocated. A number of mutants with large deletions in the R region were tested and were able to replicate with normal strong-stop DNA translocation. Thus, short stretches of homology can be used by the virus to carry out strong-stop translocations.

Keywords

Genes, Viral, Models, Genetic, Transcription, Genetic, RNA-Directed DNA Polymerase, Cell Line, Mice, DNA, Viral, Mutation, Animals, Moloney murine leukemia virus, Repetitive Sequences, Nucleic Acid

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!