<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Virus-specific proteins were examined in cultured cells infected with bovine viral diarrhea virus. By using antisera obtained from virus-infected animals, three major virus-specific polypeptides with molecular weights of 115,000 (115K), 80K, and 55K were observed. Minor proteins of 45,000 and 38,000 daltons were also noted. Tryptic peptide mapping indicated that the 115K and the 80K polypeptides were structurally related. The 55K protein was glycosylated and appeared not to be related to the 115K and 80K proteins. Pulse-chase experiments failed to demonstrate any procursor-product relationship among any of these proteins, and all three polypeptides were found in purified virion preparations. The significance of these findings with respect to the replication of bovine viral diarrhea virus is discussed.
Molecular Weight, Rotavirus, Viral Proteins, Animals, Cattle, Electrophoresis, Polyacrylamide Gel, Kidney, Peptide Fragments, Cell Line
Molecular Weight, Rotavirus, Viral Proteins, Animals, Cattle, Electrophoresis, Polyacrylamide Gel, Kidney, Peptide Fragments, Cell Line
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 84 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |