Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Clinical ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Clinical Microbiology
Article . 2000 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of the Wider System, a New Computer-Assisted Image-Processing Device for Bacterial Identification and Susceptibility Testing

Authors: Begoña Sánchez Del Saz; Rafael Cantón; Fernando Baquero; Antonio Oliver; M. Olga Gutiérrez; Martínez-Ferrer M; María Pérez-Vázquez;

Evaluation of the Wider System, a New Computer-Assisted Image-Processing Device for Bacterial Identification and Susceptibility Testing

Abstract

ABSTRACT The Wider system is a newly developed computer-assisted image-processing device for both bacterial identification and antimicrobial susceptibility testing. It has been adapted to be able to read and interpret commercial MicroScan panels. Two hundred forty-four fresh consecutive clinical isolates (138 isolates of the family Enterobacteriaceae , 25 nonfermentative gram-negative rods [NFGNRs], and 81 gram-positive cocci) were tested. In addition, 100 enterobacterial strains with known β-lactam resistance mechanisms (22 strains with chromosomal AmpC β-lactamase, 8 strains with chromosomal class A β-lactamase, 21 broad-spectrum and IRT β-lactamase-producing strains, 41 extended-spectrum β-lactamase-producing strains, and 8 permeability mutants) were tested. API galleries and National Committee for Clinical Laboratory Standards (NCCLS) microdilution methods were used as reference methods. The Wider system correctly identified 97.5% of the clinical isolates at the species level. Overall essential agreement (±1 log 2 dilution for 3,719 organism-antimicrobial drug combinations) was 95.6% (isolates of the family Enterobacteriaceae , 96.6%; NFGNRs, 88.0%; gram-positive cocci, 95.6%). The lowest essential agreement was observed with Enterobacteriaceae versus imipenem (84.0%), NFGNR versus piperacillin (88.0%) and cefepime (88.0%), and gram-positive isolates versus penicillin (80.4%). The category error rate (NCCLS criteria) was 4.2% (2.0% very major errors, 0.6% major errors, and 1.5% minor errors). Essential agreement and interpretive error rates for eight β-lactam antibiotics against isolates of the family Enterobacteriaceae with known β-lactam resistance mechanisms were 94.8 and 5.4%, respectively. Interestingly, the very major error rate was only 0.8%. Minor errors (3.6%) were mainly observed with amoxicillin-clavulanate and cefepime against extended-spectrum β-lactamase-producing isolates. The Wider system is a new reliable tool which applies the image-processing technology to the reading of commercial trays for both bacterial identification and susceptibility testing.

Keywords

Bacteria, Bacterial Infections, Microbial Sensitivity Tests, Reference Standards, beta-Lactam Resistance, Anti-Bacterial Agents, Bacterial Typing Techniques, Enterobacteriaceae, Evaluation Studies as Topic, Image Processing, Computer-Assisted, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
bronze