
ABSTRACT Archaea encode a DNA ligase composed of a C-terminal catalytic domain typical of ATP-dependent ligases plus an N-terminal domain similar to that found in eukaryotic cellular and poxvirus DNA ligases. All archaeal DNA ligases characterized to date have ATP-dependent adenylyltransferase and nick-joining activities. However, recent reports of dual-specificity ATP/NAD + ligases in two Thermococcus species and Pyrococcus abyssi and an ATP/ADP ligase in Aeropyrum pernix raise the prospect that certain archaeal enzymes might exemplify an undifferentiated ancestral stage in the evolution of ligase substrate specificity. Here we analyze the biochemical properties of Pyrococcus horikoshii DNA ligase. P. horikoshii ligase catalyzes autoadenylylation and nick sealing in the presence of a divalent cation and ATP; it is unable to utilize NAD + or ADP to promote ligation in lieu of ATP. P. horikoshii ligase is thermophilic in vitro, with optimal adenylyltransferase activity at 90°C and nick-joining activity at 70 to 90°C. P. horikoshii ligase resembles the ligases of Methanobacterium thermautotrophicum and Sulfolobus shibatae in its strict specificity for ATP.
Base Sequence, DNA Ligases, Archaeal Proteins, Nucleotidyltransferases, Adenosine Monophosphate, Substrate Specificity, Adenosine Diphosphate, Adenosine Triphosphate, DNA, Archaeal, Nucleic Acid Conformation, Pyrococcus horikoshii
Base Sequence, DNA Ligases, Archaeal Proteins, Nucleotidyltransferases, Adenosine Monophosphate, Substrate Specificity, Adenosine Diphosphate, Adenosine Triphosphate, DNA, Archaeal, Nucleic Acid Conformation, Pyrococcus horikoshii
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
