
Clostridium perfringens 11268 CDR (Rifr Tcs), the strain transformed in our experiments, was generated by curing a spontaneous, rifampicin-resistant mutant of C. perfringens 11268 (Rifr Tcr). High-temperature growth yielded tetracycline-sensitive, rifampicin-resistant cells which no longer contained pCW3, a 42.8-kilobase plasmid. The tetracycline-sensitive, rod-shaped cell was then converted to an L-phase variant by growth in the presence of penicillin G (10 micrograms/ml) and 0.4 M sucrose. After several passages, the antibiotic was removed from the medium, and cells continued to grow as L-phase variants. Another large plasmid, pJU124 (38.8 kilobases), which confers tetracycline resistance, was used for transformation. Transformation of L-phase variants of C. perfringens 11268 CDR (Rifr Tcs) was mediated by polyethylene glycol. Transformation frequency is a nonlinear function of DNA concentration. Restriction analysis showed that the plasmid isolated from the transformants was identical to that supplied. Stable L-phase variants do not revert to rod-shaped cells, but autoplasts can be both transformed and reverted.
Species Specificity, Clostridium perfringens, Mutation, Drug Resistance, Microbial, Transformation, Bacterial, Rifampin, Plasmids
Species Specificity, Clostridium perfringens, Mutation, Drug Resistance, Microbial, Transformation, Bacterial, Rifampin, Plasmids
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 49 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
