
No inhibition of nitrogenase activity by physiological levels of NH4+ or carbamyl phosphate was observed in extracts of Azotobacter vinelandii. All of the 15N2 reduced by cultures which received no NH4+ was found in the cells. By contrast, more than 95% of the 15N2 reduced by cultures which had been given NH4+ was found in the medium. Failure to examine the culture medium would lead to the erroneous conclusion that N2 fixation is inhibited by NH4+. Nitrogenase in a derepressed mutant strain of A. vinelandii was fully active in vivo in the presence of NH4+. The addition of NH4Cl to N2-fixing cultures resulted in no decrease in the N2-reducing activity of intact cells of Klebsiella pneumoniae or Clostridium pasteurianum and only a small (15%) decrease in A. vinelandii. Therefore, no significant inhibition of nitrogenase by NH4+ or metabolites derived from NH4+ exists in A. vinelandii, K. pneumoniae, or C. pasteurianum.
Clostridium, Klebsiella pneumoniae, Carbamyl Phosphate, Azotobacter, Nitrogen Fixation, Nitrogenase, Ammonium Chloride, Culture Media
Clostridium, Klebsiella pneumoniae, Carbamyl Phosphate, Azotobacter, Nitrogen Fixation, Nitrogenase, Ammonium Chloride, Culture Media
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
