Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Bacteriol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Bacteriology
Article . 1975 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Erythritol catabolism by Brucella abortus

Authors: D C Robertson; J F Sperry;

Erythritol catabolism by Brucella abortus

Abstract

Cell extracts of Brucella abortus (British 19) catabolized erythritol through a series of phosphorylated intermediates to dihydroxyacetonephosphate and CO-2. Cell extracts required adenosine 5'-triphosphate (ATP), nicotinamide adenine dinucleotide (NAD), Mg2+, inorganic orthophosphate, and reduced glutathione for activity. The first reaction in the pathway was the phosphorylation of mesoerythritol with an ATP-dependent kinase which formed d-erythritol 1-phosphate (d-erythro-tetritol 1-phosphate). d-Erythritol 1-phosphate was oxidized by an NAD-dependent dehydrogenase to d-erythrulose 1-phosphate (d-glycero-2-tetrulose 1-phosphate). B. abortus (US-19) was found to lack the succeeding enzyme in the pathway and was used to prepare substrate amounts of d-erythrulose 1-phosphate. d-Erythritol 1-phosphate dehydrogenase (d-erythro-tetritol 1-phosphage: NAD 2-oxidoreductase) is probably membrane bound. d-Erythrulose 1-phosphate was oxidized by an NAD-dependent dehydrogenase to 3-keto-l-erythrose 4-phosphate (l-glycero-3-tetrosulose 4-phosphate) which was further oxidized at C-1 by a membrane-bound dehydrogenase coupled to the electron transport system. Either oxygen or nitrate had to be present as a terminal electron acceptor for the oxidation of 3-keto-l-erythrose 4-phosphate to 3-keto-l-erythronate 4-phosphate (l-glycero-3-tetrulosonic acid 4-phosphate). The beta-keto acid was decarboxylated by a soluble decarboxylase to dihydroxyacetonephosphate and CO-2. Dihydroxyacetonephosphate was converted to pyruvic acid by the final enzymes of glycolysis. The apparent dependence on the electron transport system of erythritol catabolism appears to be unique in Brucella and may play an important role in coupling metabolism to active transport and generation of ATP.

Keywords

Cell-Free System, Cell Membrane, Phosphotransferases, Brucella abortus, Carbon Dioxide, NAD, Glutathione, Keto Acids, Oxidative Phosphorylation, Electron Transport, Alcohol Oxidoreductases, Adenosine Triphosphate, Erythritol, Oxygen Consumption, Models, Chemical, Magnesium, Sugar Phosphates, Pyruvates, Oxidation-Reduction, Subcellular Fractions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Average
bronze