
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>ABSTRACT Bacteria have robust responses to a variety of stresses. In particular, bacteria like Escherichia coli have multiple cell envelope stress responses, and generally we evaluate what these responses are doing by the repair systems they induce. However, probably at least as important in interpreting what is being sensed as stress are the genes that these stress systems downregulate, directly or indirectly. This is discussed here for the Cpx and sigma E systems of E. coli .
Bacterial Proteins, Escherichia coli Proteins, Escherichia coli, Sigma Factor, Gene Expression Regulation, Bacterial
Bacterial Proteins, Escherichia coli Proteins, Escherichia coli, Sigma Factor, Gene Expression Regulation, Bacterial
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
