Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EcoSal Plusarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EcoSal Plus
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
EcoSal Plus
Article . 2010 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
EcoSal Plus
Article . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DNA Helicases

Authors: Piero R, Bianco;

DNA Helicases

Abstract

DNA and RNA helicases are organized into six superfamilies of enzymes on the basis of sequence alignments, biochemical data, and available crystal structures. DNA helicases, members of which are found in each of the superfamilies, are an essential group of motor proteins that unwind DNA duplexes into their component single strands in a process that is coupled to the hydrolysis of nucleoside 5'-triphosphates. The purpose of this DNA unwinding is to provide nascent, single-stranded DNA (ssDNA) for the processes of DNA repair, replication, and recombination. Not surprisingly, DNA helicases share common biochemical properties that include the binding of single- and double-stranded DNA, nucleoside 5'-triphosphate binding and hydrolysis, and nucleoside 5'-triphosphate hydrolysis-coupled, polar unwinding of duplex DNA. These enzymes participate in every aspect of DNA metabolism due to the requirement for transient separation of small regions of the duplex genome into its component strands so that replication, recombination, and repair can occur. In Escherichia coli , there are currently twelve DNA helicases that perform a variety of tasks ranging from simple strand separation at the replication fork to more sophisticated processes in DNA repair and genetic recombination. In this chapter, the superfamily classification, role(s) in DNA metabolism, effects of mutations, biochemical analysis, oligomeric nature, and interacting partner proteins of each of the twelve DNA helicases are discussed.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
bronze