Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao EcoSal Plusarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
EcoSal Plus
Article . 2004 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
EcoSal Plus
Article . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ammonia Transport

Authors: Ned S, Wingreen;
Abstract

This review reviews the ammonium/methylammonium transport (Amt) proteins of Escherichia coli and Salmonella enterica serovar Typhimurium. The Amt proteins and their homologs, the methylammonium/ammonium permease proteins of Saccharomyces cerevisiae , constitute a distinct class of membrane-associated ammonia transporters. Members of the Amt family are found in archaea, bacteria, fungi, plants, and invertebrate animals. In E. coli and serovar Typhimurium, the Amt proteins are essential to maintain maximal growth at low concentrations of ammonia, the preferred nitrogen source. Soupene and coworkers showed that a mutant of E. coli with only the low-affinity glutamate dehydrogenase pathway for assimilation of ammonia, which therefore grows slowly at low ammonia concentrations, is not relieved of its growth defect by overexpression of AmtB. A recent study on an Amt protein from tomato concluded that it was a specific transporter for NH4 + . A trimeric stoichiometry for AmtB is supported by the observation of a direct interaction between AmtB and the trimeric signal-transduction protein GlnK. In E. coli , GlnK has been observed to associate with the membrane in an AmtB-dependent fashion. Both GlnK and GlnB are sensors of nitrogen status. Their interaction with AmtB suggests a role for AmtB in nitrogen regulation. In summary, AmtB is a membrane-associated ammonia transporter that is important for growth at external concentrations of the uncharged species (NH 3 ) below about 50 nM. The preponderance of evidence suggests that AmtB specifically transports the charged species (NH 4 + ) and that this transport is passive and, hence, bidirectional.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!