Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao EcoSal Plusarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
EcoSal Plus
Article . 2005 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
EcoSal Plus
Article . 2015
versions View all 2 versions
addClaim

Outer Membrane Vesicles

Authors: Amanda J, McBroom; Meta J, Kuehn;

Outer Membrane Vesicles

Abstract

Outer membrane vesicles (blebs) are produced by Escherichia coli , Salmonella , and all other gram-negative bacteria both in vitro and in vivo. Most of the research in the field has focused on the properties of vesicles derived from pathogenic bacteria and their interactions with eukaryotic cells. These data indicate that vesicles are able to contribute to pathogenesis. Thus, it appears that pathogenic gram-negative bacteria have co-opted vesicles for the dissemination of virulence determinants. However, the role of vesicle production by nonpathogenic bacteria is less obvious. This section reviews the data demonstrating the mechanistic and physiological basis of outer membrane vesicle production by bacteria. Vesiculation can be seen as a mechanism for cells to react to conditions in the surrounding environment by carrying away unnecessary components and allowing rapid modification of the outer membrane composition. In addition, vesicles can transmit biological activities distant from the originating cell. Vesicles could act to bind and deplete host immune factors at the site of infection that would otherwise attack the bacteria. Vesicles in the area surrounding the cell may also provide the cell protection inside a human or animal host. The concept of vesicles as virulence factors has received considerable attention, and they are likely to play a significant role in the pathogenesis of gram-negative bacteria. By analysis of their composition, mechanism of formation, regulation, and physiological function, progress is being made in understanding the ubiquitous nature of outer membrane vesicles produced by gram-negative bacteria.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!