Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clinical and Vaccine...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical and Vaccine Immunology
Article . 2015 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biblos-e Archivo
Article . 2015
Data sources: Biblos-e Archivo
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Proteins Selected in Leishmania (Viannia) braziliensis by an Immunoproteomic Approach with Potential Serodiagnosis Applications for Tegumentary Leishmaniasis

Authors: Duarte, Mariana Costa; Pimenta, Daniel C.; Menezes-Souza, Daniel; Magalhães, Rubens; Diniz, João; Costa, Lourena; Chávez-Fumagalli, Miguel; +9 Authors

Proteins Selected in Leishmania (Viannia) braziliensis by an Immunoproteomic Approach with Potential Serodiagnosis Applications for Tegumentary Leishmaniasis

Abstract

ABSTRACTThe serodiagnosis of human tegumentary leishmaniasis (TL) presents some problems, such as the low level of antileishmanial antibodies found in most of the patients, as well as the cross-reactivity in subjects infected by other trypanosomatids. In the present study, an immunoproteomic approach was performed aimed at identification of antigens in total extracts of stationary-phase promastigote and amastigote-like forms ofLeishmania(Viannia)braziliensisusing sera from TL patients. With the purpose of reducing the cross-reactivity of the identified proteins, spots recognized by sera from TL patients, as well as those recognized by antibodies present in sera from noninfected patients living in areas where TL is endemic and sera from Chagas disease patients, were discarded. TwoLeishmaniahypothetical proteins and 18 proteins with known functions were identified as antigenic. The study was extended with some of them to validate the results of the immunoscreening. The coding regions of five of the characterized antigens (enolase, tryparedoxin peroxidase, eukaryotic initiation factor 5a, β-tubulin, and one of the hypothetical proteins) were cloned in a prokaryotic expression vector, and the corresponding recombinant proteins were purified and evaluated for the serodiagnosis of TL. The antigens presented sensitivity and specificity values ranging from 95.4 to 100% and 82.5 to 100%, respectively. As a comparative antigen, a preparation ofLeishmaniaextract showed sensitivity and specificity values of 65.1 and 57.5%, respectively. The present study has enabled the identification of proteins able to be employed for the serodiagnosis of TL.

Country
Spain
Keywords

Adult, Male, Proteomics, Immunoblotting, Protozoan Proteins, Leishmaniasis, Cutaneous, Enzyme-Linked Immunosorbent Assay, Cross Reactions, Sensitivity and Specificity, Leishmania braziliensis, Bacterial Proteins, Humans, Serologic Tests, Aged, Serodiagnosis, Antigens, Bacterial, Immunoproteomic, Middle Aged, Biología y Biomedicina / Biología, Recombinant Proteins, Peroxidases, Female

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 33
    download downloads 33
  • 33
    views
    33
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
59
Top 10%
Top 10%
Top 10%
33
33
Green
gold