
ABSTRACT Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol.
Resveratrol, Stilbenes, Escherichia coli, Gene Expression, Acyltransferases, Chromatography, High Pressure Liquid, Metabolic Networks and Pathways, Recombinant Proteins, Plant Proteins
Resveratrol, Stilbenes, Escherichia coli, Gene Expression, Acyltransferases, Chromatography, High Pressure Liquid, Metabolic Networks and Pathways, Recombinant Proteins, Plant Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 224 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
